Sector-Based Evaluation of Aquaculture Wastes
Aquaculture Wastes
DOI:
https://doi.org/10.1071/ejmbs.v4i2.21Anahtar Kelimeler:
Aquaculture waste management- recirculating aquaculture systems- integrated multi-trophic aquaculture- waste valorization- bioremediation,- circular economy in aquacultureÖzet
This study evaluates the environmental and economic impacts of aquaculture waste and discusses innovative management strategies to support industry sustainability. As aquaculture continues to expand as a major contributor to global food supply, waste generation from uneaten feed, fish feces, chemical residues, and processing by-products poses significant challenges. Key waste management techniques include Recirculating Aquaculture Systems (RAS) and Integrated Multi-Trophic Aquaculture (IMTA), which enhance resource efficiency by recycling water and nutrients within aquaculture operations. Valorization of waste into biofuels, fertilizers, fishmeal, and other value-added products further supports a circular economy approach. Additionally, bioremediation methods, including microbial communities and constructed wetlands, offer natural solutions for reducing contaminants. Addressing antibiotic and chemical residues remains critical to protect ecosystems and public health, prompting an emphasis on regulatory compliance and consumer awareness. Overall, sustainable waste management in aquaculture is essential for reducing environmental impacts, optimizing resources, and meeting the demands of a growing market for responsibly produced seafood. The adoption of sustainable waste management practices will not only reduce environmental impacts but also meet the growing demand for responsibly produced seafood. Additionally, collaboration among industry stakeholders should be encouraged to develop more effective solutions.
Referanslar
Alvarado-Ramírez, L., Santiesteban-Romero, B., Poss, G., Sosa-Hernández, J. E., Iqbal, H. M., Parra-Saldívar, R., Melchor-Martínez, E. M. (2023). Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. Frontiers in Chemical Engineering, 4, 1072761.
Amirkolaie, A. K. (2011). Reduction in the environmental impact of waste discharged by fish farms through feed and feeding. Reviews in Aquaculture, 3(1), 19-26.
Ashour, M., Mabrouk, M. M., Abo-Taleb, H. A., Sharawy, Z. Z., Ayoub, H. F., Van Doan, H., Goda, A. M. A. (2021). A liquid seaweed extract (TAM®) improves aqueous rearing environment, diversity of zooplankton community, whilst enhancing growth and immune response of Nile tilapia, Oreochromis niloticus, challenged by Aeromonas hydrophila. Aquaculture, 543, 736915.
Beveridge, M. C., Thilsted, S. H., Phillips, M. J., Metian, M., Troell, M., Hall, S. J. (2013). Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculturea. Journal of fish biology, 83(4), 1067-1084.
Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Corner, R. (2010). Aquaculture: global status and trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2897-2912.
Boyd, C. E. (2003). Guidelines for aquaculture effluent management at the farm-level. Aquaculture, 226(1-4), 101-112.
Boyd, C. E., Tucker, C. S. (2012). Pond aquaculture water quality management. Springer Science & Business Media.
Boyd, C., McNevin, A. (2015). Aquaculture, resource use, and the environment. John Wiley & Sons.
Brooks, K. M., Mahnken, C. V. (2003). Interactions of Atlantic salmon in the Pacific northwest environment: II. Organic wastes. Fisheries Research, 62(3), 255-293.
Burford, E. P., Fomina, M., Gadd, G. M. (2003). Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67(6), 1127-1155.
Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8(7), 1137-1144.
Cánovas-Molina, A., García-Frapolli, E. (2021). Socio-ecological impacts of industrial aquaculture and ways forward to sustainability. Marine and Freshwater Research, 72(8), 1101-1109.
Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, Z., Xiong, S., Diana, J. (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science and Pollution Research-International, 14, 452-462.
Carvalho Pereira, J., Lemoine, A., Neubauer, P., Junne, S. (2022). Perspectives for improving circular economy in brackish shrimp aquaculture. Aquaculture Research, 53(4), 1169-1180.
Chiquito-Contreras, R. G., Hernandez-Adame, L., Alvarado-Castillo, G., Martínez-Hernández, M. D. J., Sánchez-Viveros, G., Chiquito-Contreras, C. J., Hernandez-Montiel, L. G. (2022). Aquaculture—Production System and Waste Management for Agriculture Fertilization—A Review. Sustainability, 14(12), 7257.
Cripps, S. J., Bergheim, A. (2000). Solids management and removal for intensive land-based aquaculture production systems. Aquacultural engineering, 22(1-2), 33-56.
Dauda, A. B., Ajadi, A., Tola-Fabunmi, A. S., Akinwole, A. O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4(3), 81-88.
De Silva, S. S., Soto, D. (2009). Climate change and aquaculture: potential impacts, adaptation and mitigation. Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper, 530, 151-212.
Del Campo, L. M., Ibarra, P., Gutiérrez, X., Takle, H. R. (2010). Utilization of sludge from recirculation aquaculture systems. Nofima rapportserie.
Fajardo, C., Martinez-Rodriguez, G., Blasco, J., Mancera, J. M., Thomas, B., De Donato, M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquaculture and Fisheries, 7(2), 185-200.
FAO. (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. Rome: FAO.
Farrant, D. N., Frank, K. L., Larsen, A. E. (2021). Reuse and recycle: Integrating aquaculture and agricultural systems to increase production and reduce nutrient pollution. Science of the total environment, 785, 146859.
Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J. A., Dempster, T., Berckmans, D. (2018). Precision fish farming: A new framework to improve production in aquaculture. biosystems engineering, 173, 176-193.
Fraga-Corral, M., Ronza, P., Garcia-Oliveira, P., Pereira, A. G., Losada, A. P., Prieto, M. A., Simal-Gandara, J. (2022). Aquaculture as a circular bio-economy model with Galicia as a study case: How to transform waste into revalorized by-products. Trends in Food Science & Technology, 119, 23-35.
Ghaly, A. E., Ramakrishnan, V. V., Brooks, M. S., Budge, S. M., Dave, D. (2013). Fish processing wastes as a potential source of proteins. Amino acids and oils: A critical review. J. Microb. Biochem. Technol, 5(4), 107-129.
Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H., Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7(4), 4199-4224.
González-Gaya, B., García-Bueno, N., Buelow, E., Marin, A., Rico, A. (2022). Effects of aquaculture waste feeds and antibiotics on marine benthic ecosystems in the Mediterranean Sea. Science of the Total Environment, 806, 151190.
Grigorakis, K. (2010). Ethical issues in aquaculture production. Journal of agricultural and environmental ethics, 23, 345-370.
Holmer, M., Duarte, C. M., Heilskov, A., Olesen, B., Terrados, J. (2003). Biogeochemical conditions in sediments enriched by organic matter from net-pen fish farms in the Bolinao area, Philippines. Marine Pollution Bulletin, 46(11), 1470-1479.
Isibor, P. O., Kayode-Edwards, I. I., Onwaeze, O. O. (2024). Prospects and Challenges of Nanochitosan Application in Aquaculture. Nanochitosan-Based Enhancement of Fisheries and Aquaculture: Aligning with Sustainable Development Goal 14–Life Below Water, 301-320.
John, E. P., Mishra, U. (2024). Integrated multitrophic aquaculture supply chain fish traceability with blockchain technology, valorisation of fish waste and plastic pollution reduction by seaweed bioplastic: A study in tuna fish aquaculture industry. Journal of Cleaner Production, 434, 140056.
Knowler, D., Chopin, T., Martínez‐Espiñeira, R., Neori, A., Nobre, A., Noce, A., Reid, G. (2020). The economics of Integrated Multi‐Trophic Aquaculture: where are we now and where do we need to go. Reviews in Aquaculture, 12(3), 1579-1594.
Kruk, S., Peters, H. (2018). Towards a Socially Responsible Aquaculture Stewardship Council.
Lin, Y. F., Jing, S. R., Lee, D. Y., Wang, T. W. (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209(1-4), 169-184.
López-Pedrouso, M., Lorenzo, J. M., Cantalapiedra, J., Zapata, C., Franco, J. M., Franco, D. (2020). Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. Advances in food and nutrition research, 92, 127-185.
Martins, C. I. M., Eding, E. H., Verdegem, M. C., Heinsbroek, L. T., Schneider, O., Blancheton, J. P., Verreth, J. A. J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural engineering, 43(3), 83-93.
Mavraganis, T., Constantina, C., Kolygas, M., Vidalis, K., Nathanailides, C. (2020). Environmental issues of Aquaculture development. Egyptian Journal of Aquatic Biology and Fisheries, 24(2), 441-450.
McCallum, M. L., Weston, S. D., Tilahun, Y. (2020). Performance of early juvenile giant river prawns (Macrobrachium rosenbergii) fed fish, soybean, shrimp and four insect based diets while under low temperature stress. In Proceedings of the Oklahoma Academy of Science (Vol. 100).
McNally, T. (2009). Overview of the EU Water Framework Directive and its implementation in Ireland. In Biology and Environment: Proceedings of the Royal Irish Academy (pp. 131-138). Royal Irish Academy.
Miller, D., Semmens, K. (2002). Waste management in aquaculture. West Virginia University Extension Service Publication No. AQ02-1. USA, 8.
Mutalipassi, M., Esposito, R., Ruocco, N., Viel, T., Costantini, M., Zupo, V. (2021). Bioactive compounds of nutraceutical value from fishery and aquaculture discards. Foods, 10(7), 1495.
Naylor, R. L., Williams, S. L., Strong, D. R. (2001). Aquaculture--A gateway for exotic species. Science, 294(5547), 1655-1656.
Pędziwiatr, P. (2017). Aquaculture waste management. Acta Innovations, (22), 20-29.
Qi, Z., Han, T., Zhang, J., Huang, H., Mao, Y., Jiang, Z., Fang, J. (2015). First report on in situ biodeposition rates of ascidians (Ciona intestinalis and Styela clava) during summer in Sanggou Bay, northern China. Aquaculture Environment Interactions, 6(3), 233-239.
Rakocy, J. E. (2012). Aquaponics—integrating fish and plant culture. Aquaculture production systems, 344-386.
Raul, C., Pattanaik, S. S., Prakash, S., Sreedharan, K., Bharti, S. (2020). Greenhouse gas emissions from aquaculture systems. World Aquac, 57, 57-61.
Satya, A. D. M., Cheah, W. Y., Yazdi, S. K., Cheng, Y. S., Khoo, K. S., Vo, D. V. N., Show, P. L. (2023). Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy. Environmental Research, 218, 114948.
Sequeira, A., Ferreira, J. G., Hawkins, A. J. S., Nobre, A., Lourenço, P., Zhang, X. L., Nickell, T. (2008). Trade-offs between shellfish aquaculture and benthic biodiversity: a modelling approach for sustainable management. Aquaculture, 274(2-4), 313-328.
Singh, G., Khati, A., Chauhan, R. S. (2020). Applications of environment biotechnology in aquaculture-review. International Journal of Agriculture, Environment and Biotechnology, 13(2), 239-247.
Suuronen, P., Chopin, F., Glass, C., Løkkeborg, S., Matsushita, Y., Queirolo, D., Rihan, D. (2012). Low impact and fuel efficient fishing—Looking beyond the horizon. Fisheries research, 119, 135-146.
Tacon, A. G., Forster, I. P. (2003). Aquafeeds and the environment: policy implications. Aquaculture, 226(1-4), 181-189.
Tacon, A. G., Metian, M. (2015). Feed matters: satisfying the feed demand of aquaculture. Reviews in Fisheries Science & Aquaculture, 23(1), 1-10.
Tucker, C. S., Hargreaves, J. A., Boyd, C. E. (2008). Better management practices for freshwater pond aquaculture. Environmental best management practices for aquaculture, 151-226.
Van Houtte, A. (2000). Establishing legal, institutional and regulatory framework for aquaculture development and management. In Technichal Proceeding of the Conference on Aquaculture in the Third Millenium, Bangkok, Thailand (pp. 20-25).
Van Rijn, J. (2013). Waste treatment in recirculating aquaculture systems. Aquacultural Engineering, 53, 49-56.
Venugopal, V. (2021). Valorization of seafood processing discards: Bioconversion and bio-refinery approaches. Frontiers in Sustainable Food Systems, 5, 611835.
Wu, Y., Song, K. (2021). Source, treatment, and disposal of aquaculture solid waste: a review. Journal of Environmental Engineering, 147(3), 03120012.
Yun, J. H., Archer, S. D., Price, N. N. (2023). Valorization of waste materials from seaweed industry: An industry survey based biorefinery approach. Reviews in Aquaculture, 15(3).
Zhao, R., Liu, J., Feng, J., Li, X., Li, B. (2021). Microbial community composition and metabolic functions in landfill leachate from different landfills of China. Science of the total Environment, 767, 144861.