Thyroid gland and vocational exposure to low dose ionizing radiation in health
DOI:
https://doi.org/10.1071/ejmbs.v3i2.5Keywords:
Radiation, Thyroid, Triiodothyronine, Thyroxine, Healthcare professional, HypothyroidismAbstract
Healthcare workpeople may be exposed to low-dose ionizing radiation for both diagnosis and treatment purposes. In addition, one of the radiation-sensitive organs in humans is the thyroid gland. This study aimed to investigate the changes observed in thyroid structure and functions in healthcare workers exposed to occupational radiation. Radiological imaging procedures are among the leading applications of exposure to ionizing radiation. Radiotherapy, one of the treatment options for radiosensitive tumors, is one of the areas in medicine where ionizing radiation is used. Nuclear medicine, another field of medicine in which ionizing radiation is used, is the largest theranostic field in which radioactive substances are used. The risk of hypothyroidism increases in healthcare workpeople exposed to low-dose ionizing radiation. Additionally, this exposure has been related with an effect on thyroid hormones and an increased likelihood of developing thyroid immune diseases. Additionally, female radiation healthcare workpeople have higher levels of abnormal thyroid nodules, triiodothyronine, and thyroid-stimulating hormone than their male counterparts. In addition, abnormal thyroid nodules, triiodothyronine and thyroxine levels increase with age in people in this occupational group. On the other hand, exposure to low-dose radiation was not associated with the risk of thyroid cancer in these healthcare workers. As a result, occupational exposure to low-dose radiation can cause damage to the thyroid gland, which is a radiation-sensitive organ. In order to prevent health problems in the functions and structure of the thyroid organ, those who are occupationally exposed to ionizing radiation should apply personal protection methods as meticulously as possible.
References
Albi, E., Cataldi, S., Lazzarini, A., Codini, M., Beccari, T., Ambesi-Impiombato, F. S., Curcio, F. (2017). Radiation and Thyroid Cancer. Int. J. Mol. Sci., 18(5), 911.
Braverman, L. E., Cooper, D. (2012). Werner & Ingbar's the thyroid: a fundamental and clinical text. Lippincott Williams & Wilkins.
Burgio, E., Piscitelli, P., Migliore, L. (2018). Ionizing Radiation and Human Health: Reviewing Models of Exposure and Mechanisms of Cellular Damage. An Epigenetic Perspective. Int. J. Environ. Res. Public. Health, 15(9), 1971.
Carvalho, H. A., Villar, R. C. (2018). Radiotherapy and immune response: the systemic effects of a local treatment. Clinics (Sao Paulo), 73(suppl 1), e557s.
Chambers, C. E. (2017). Health Risks of Ionizing Radiation: Dr Roentgen Today. Circulation, 136(25), 2417-2419.
Cioffi, D. L., Fontana, L., Leso, V., Dolce, P., Vitale, R., Vetrani, I., Galdi, A., Iavicoli, I. (2020). Low dose ionizing radiation exposure and risk of thyroid functional alterations in healthcare workers. Eur. J. Radiol., 132, 109279.
Divrik Gökçe, S., Gökçe, E., Coşkun, M. (2012). Radiology residents' awareness about ionizing radiation doses in imaging studies and their cancer risk during radiological examinations. Korean J. Radiol., 13(2), 202-209.
Domina, E. A., Philchenkov, A., Dubrovska, A. (2018). Individual Response to Ionizing Radiation and Personalized Radiotherapy. Crit. Rev. Oncog., 23(1-2), 69-92.
Eidemüller, M., Holmberg, E., Jacob, P., Lundell, M., Karlsson, P. (2009). Breast cancer risk among Swedish hemangioma patients and possible consequences of radiation-induced genomic instability. Mutat. Res., 669, 48-55
El-Benhawy, S. A., Fahmy, E. I., Mahdy, S. M., Khedr, G. H., Sarhan, A. S., Nafady, M. H., Yousef Selim, Y.A., Salem, T. M., Abu-Samra, N., El Khadry, H. A. (2022). Assessment of thyroid gland hormones and ultrasonographic abnormalities in medical staff occupationally exposed to ionizing radiation. BMC Endocr. Disord., 22(1), 287.
Flohr, T. G., Schaller, S., Stierstorfer, K., Bruder, H., Ohnesorge, B. M., Schoepf, U. J. (2005). Multi-Detector Row CT Systems and Image-Reconstruction Techniques. Radiology., 235, 756-773.
Hall, E. J., Brenner, D. J. (2008). Cancer risks from diagnostic radiology. Br. J. Radiol., 81(965), 362-378.
Havránková, R. (2020). Biological effects of ionizing radiation. Cas. Lek. Cesk., 159(7-8), 258-260.
Jelonek, K., Pietrowska, M., Widlak, P. (2017). Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity. Int. J. Radiat. Biol., 93(7), 683-696.
Jiao, Y., Cao, F., Liu, H. (2022). Radiation-induced Cell Death and Its Mechanisms. Health Phys., 123(5), 376-386.
Kitahara, C. M., Preston, D. L., Neta, G., Little, M. P., Doody, M. M., Simon, S. L., Sigurdson, A. J., Alexander, B. H., Linet, M. S. (2018). Occupational radiation exposure and thyroid cancer incidence in a cohort of U.S. radiologic technologists, 1983-2013. Int. J. Cancer., 143(9), 2145-2149.
Liu, G., Zhang, R., Li, Y., Wu, X. Q., Niu, L. M., Liu, Y. Y, Zhang, X. (2022). Study of Low-Dose Radiation Workers Ionizing Radiation Sensitivity Index and Radiation Dose-Effect Relationship. Health Phys., 123(4), 332-339.
Lu, Z., Zheng, X., Ding, C., Zou, Z., Liang, Y., Zhou, Y., Li, X. (2022). Deciphering the Biological Effects of Radiotherapy in Cancer Cells. Biomolecules, 12(9), 1167.
Lu, B. F., Yin, W. J., Xu, T., Li, N. N., Yi, G. L. (2022). Correlation analysis of low-dose X-ray ionizing radiation and thyroid function in radiation workers. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi., 40(10), 733-736.
Luna-Sánchez, S., Del Campo, M. T., Morán, J. V., Fernández, I. M., Checa, F. J. S., de la Hoz, R. E. (2019). Thyroid Function in Health Care Workers Exposed to Ionizing Radiation. Health Phys., 117(4), 403-407.
Mettler, F. A., Huda, W., Yoshizumi, T. T., Mahesh, M. (2008). Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology, 248(1), 254-263.
Minniti, G., Goldsmith, C., Brada, M. (2012). Radiotherapy. Handb Clin Neurol., 104,215-228.
Nagayama, Y. (2018). Radiation-related thyroid autoimmunity and dysfunction. J Radiat Res., 59(suppl_2), ii98-ii107.
Nunes, R. F., Zuppani, R. M. F., Coutinho, A. M., Barbosa, F. G., Sapienza, M. T., Marin, J. F. G., Buchpiguel, C. A. (2021). General Concepts in Theranostics. PET Clin. 16(3), 313-326.
Penha, R. C. C., Pellecchia, S., Pacelli, R., Pinto, L. F. R., Fusco, A. (2018). Ionizing Radiation Deregulates the MicroRNA Expression Profile in Differentiated Thyroid Cells. Thyroid. 28(3), 407-421.
Streffer, C. (2010). Strong association between cancer and genomic instability. Radiat Environ Biophys., 49, 125–131.
Tu, L., Wang, S. L., Dong, Q., Song, H. Y., Li, X. T., Tan, C. P., Dong, X. (2018). Effect of low-dose ionizing radiation exposure on thyroid function in a medical occupational population. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi., 36(2), 91-94. Chinese.
Tuncel, E. (2008). Klinik Radyoloji. Genişletilmiş 2. Baskı. Nobel&Güneş Tıp Kitabevleri. s. 3–105.
UNSCEAR (2000). Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. New York: United Nations; 2000. UNSCEAR 2000 Report to the General Assembly.
Virgili, M. (2020). The management of benign thyroid pathologies in medical radiation protection. Giornale Italiano di Medicina del Lavoro ed Ergonomia, 42(4), 281-291.
Yang, Y., Wang, Q., Yang, L. T., Zhao, Z. X. (2022). Investigate the thyroid function of radiation workers and analysis of influence factors. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi., 40(2), 113-116.