Evaluation of indoor air quality by indoor environmental index in market places in Istanbul/Türkiye during Covid-19 pandemic
Keywords:
Indoor Air Quality, Indoor Environmental Index, Marketplaces, COVID-19Abstract
This is the first study to evaluate the indoor air quality of markets using the “Indoor Environmental Index (IEI)”. In the study, carbon dioxide (CO2), relative humidity, temperature, particulate matter, and total volatile organic compounds were measured as indoor air quality parameters in four different markets in Istanbul during the COVID-19 pandemic. Data were analyzed and evaluated using IBM SPSS Statistics 22 program. While CO2, Paticulate matters (PM2.5, PM10), humidity, and temperature had a statistically significant difference in different markets, no statistically significant difference was found for NO2 and total volatile organic compounds (p>0.05). Considering the different hours in a day, it was determined that there was a statistically significant difference for all parameters. The highest and strongest correlation between the parameters was found between PM2.5 and PM10 (r=0.703, p<0.01). The IEI values for 4 different markets in different time intervals in a day were found as 6.862, 6.775, 8.816, and 6.244, respectively. The highest and lowest Indoor Environmental Index values were calculated in market2 (7,525) and market4 (4,936), respectively. Indoor air quality parameters had an impact on the IEI results as they affected the pollution index and the discomfort index. As a result of the study, it was seen that the density of customers and products, the size of the closed area of the markets, and the capacity of ventilation equipment affect the indoor air quality. All these results were evaluated and suggestions were made about the visit times to the markets.
References
Abdullah, S., Abd Hamid, F. F., Ismail, M., Ahmed, A. N., Mansor, W. N. W. (2019). Data on Indoor Air Quality (IAQ) in kindergartens with different surrounding activities. Data Brief, 25, 103969. https://doi.org/10.1016/j.dib.2019.103969
Abdullah, S., Shukor, M. S. M., Shahrudin, D., Ismail, M. (2018). The assessment of indoor air quality (IAQ) at refinery industry. Int. J. Civ. Eng. Technol, 9, 925-932. ISSN Print: 0976-6308 and ISSN Online: 0976-6316
Abdul-Wahab, S. A., En, S. C. F., Elkamel, A., Ahmadi, L., Yetilmezsoy, K. (2015). A review of standards and guidelines set by international bodies for the parameters of indoor air quality. Atmos. Pollut. Res., 6(5), 751-767. https://doi.org/10.5094/APR.2015.084
Agarwal, N., Meena, C. S., Raj, B. P., Saini, L., Kumar, A., Gopalakrishnan, N., Aggarwal, V. (2021). Indoor air quality improvement in COVID-19 pandemic. Sustain. Cities Soc., 70, 102942. https://doi.org/10.1016/j.scs.2021.102942
ASHRAE (2009). American Society of Heating, Refrigerating and Air-conditioning Engineers. Indoor Air Quality Guide: Best Practices For Design, Construction, And Commissioning. ISBN: 978-1-933742-59-5
Awang, N. R., Ramli, N. A., Yahaya, A. S., Elbayoumi, M. (2015). Multivariate methods to predict ground level ozone during daytime, nighttime, and critical conversion time in urban areas. Atmos. Pollut. Res., 6(5), 726-734. https://doi.org/10.5094/APR.2015.081
Bashir, M. F., Jiang, B., Komal, B., Bashir, M. A., Farooq, T. H., Iqbal, N., Bashir, M. (2020). Correlation between environmental pollution indicators and COVID-19 pandemic: a brief study in Californian context. Environ. Res., 187, 109652. https://doi.org/10.1016/j.envres.2020.109652
Bentayeb, M., Norback, D., Bednarek, M., Bernard, A., Cai, G., Cerrai, S., Eleftheriou, K. K., Gratziou, C., Holst, G. J., Lavaud, F., Nasilowski, J., Sestini, P., Sarno, G., Sigsgaard, T., Wieslander, G., Zielinski, J., Viegi, G., Annesi-Maesano, I. (2015). Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe. Eur. Respir. J., 45(5), 1228-1238. https://doi: 10.1183/09031936.00082414
Beyhan, H. C., Eren, G., Aktuğ, B. (2020). Optimal Location Selection for Retail Market Locations with GIS Based Multi Criteria AHP Method: The Case of Istanbul. AKU J. Sci. Eng., 20(6), 1032-1050. https://doi.org/10.35414/akufemubid.803391
Bralewska, K., Rogula-Kozłowska, W., Bralewski, A. (2022). Indoor air quality in sports center: Assessment of gaseous pollutants. Build. Environ., 208, 108589. https://doi.org/10.1016/j.buildenv.2021.108589
Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G., Sousa, S. I. V. (2014). Indoor air quality in urban nurseries at Porto city: Particulate matter assessment. Atmos. Environ., 84, 133-143. https://doi.org/10.1016/j.atmosenv.2013.11.035
Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G., & Sousa, S. I. (2019). Quantifying indoor air quality determinants in urban and rural nursery and primary schools. Environ. Res., 176, 108534. https://doi.org/10.1016/j.envres.2019.108534
Cabovská, B., Bekö, G., Teli, D., Ekberg, L., Dalenbäck, J. O., Wargocki, P., Langer, S. (2022). Ventilation strategies and indoor air quality in Swedish primary school classrooms. Build. Environ., 109744. https://doi.org/10.1016/j.buildenv.2022.109744
Chen, Y. H., Tu, Y. P., Sung, S. Y., Weng, W. C., Huang, H. L., Tsai, Y. I. (2022). A comprehensive analysis of the intervention of a fresh air ventilation system on indoor air quality in classrooms. Atmos. Pollut. Res., 13(4), 101373. https://doi.org/10.1016/j.apr.2022.101373
Chiang, C. M., Lai, C. M. (2002). A study on the comprehensive indicator of indoor environment assessment for occupants’ health in Taiwan. Build. Environ., 37(4), 387-392. https://doi.org/10.1016/S0360-1323(01)00034-8
Circular Letter, 2020a. Supplementary Circular of the Ministry of Interior of the Republic of Türkiye on Markets within the Scope of Combating the Coronavirus Outbreak dated 24.03.2020. https://www.icisleri.gov.tr/koronavirus-salgini-ile-mucadele-kapsaminda-marketlerle-ilgili-ek-genelge
Circular Letter, 2020b. Within the Scope of Combating Coronavirus - New Restrictions and Measures Circulars. Ministry of Interior of the Republic of Türkiye Circular, dated 01.12.2020 https://www.icisleri.gov.tr/koronavirus-ile-mucadele-kapsaminda-sokaga-cikma-kisitlamalari---yeni-kisitlama-ve-tedbirler-genelgeleri
Comunian, S., Dongo, D., Milani, C., Palestini, P. (2020). Air pollution and COVID-19: the role of particulate matter in the spread and increase of COVID-19’s morbidity and mortality. Int. J. Environ. Res. Public Health, 17(12), 4487. https://doi.org/10.3390/ijerph17124487
Davis, R. E., McGregor, G. R., Enfield, K. B. (2016). Humidity: A review and primer on atmospheric moisture and human health. Environ. Res., 144, 106-116. http://dx.doi.org/10.1016/j.envres.2015.10.014
De Gennaro, G., Dambruoso, P. R., Loiotile, A. D., Di Gilio, A., Giungato, P., Tutino, M., Marzocca, A., Mazzone, A., Palmisani, J., Porcelli, F. (2014). Indoor air quality in schools. Environ. Chem. Lett., 12(4), 467-482. https://doi.org/10.1007/s10311-014-0470-6
EMSG, 2020. COVID-19 Epidemic Management and Study Guide (dated: 26.06.2020, page: 107). Ministry of Health of the Republic of Türkiye. https://covid19.saglik.gov.tr/Eklenti/37722/0/covid-19salginyonetimivecalismarehberipdf.pdf
Farooq, M., Azadfar, E., Rusu, A., Trif, M., Poushi, M. K., Wang, Y. (2021). Improving the shelf life of peeled fresh almond kernels by edible coating with mastic gum. Coatings, 11(6), 618. https://doi.org/10.3390/coatings11060618
Fermo, P., Artíñano, B., De Gennaro, G., Pantaleo, A. M., Parente, A., Battaglia, F., Colicino, E., Di Tanna, G., Da Silva Junior, A., G., Pereira, I., G., Garcia, G., S., Goncalves, L., M., G., Comite, V., Miani, A. (2021). Improving indoor air quality through an air purifier able to reduce aerosol particulate matter (PM) and volatile organic compounds (TVOCs): Experimental results. Environ. Res., 197, 111131. https://doi.org/10.1016/j.envres.2021.111131
Fernández-Agüera, J., Dominguez-Amarillo, S., Fornaciari, M., Orlandi, F. (2019). TVOCs and PM 2.5 in naturally ventilated homes: three case studies in a mild climate. Sustainability, 11(22), 6225. https://doi.org/10.3390/su11226225.
Fresán, U., Sabaté, J. (2019). Vegetarian diets: planetary health and its alignment with human health. Adv. Nutr., 10 (Supplement_4), S380-S388. https://doi.org/10.1093/advances/nmz019
Fromme, H., Debiak, M., Sagunski, H., Röhl, C., Kraft, M., Kolossa-Gehring, M. (2019). The German approach to regulate indoor air contaminants. Int. J. Hyg. Environ. Health, 222(3), 347-354. https://doi.org/10.1016/j.ijheh.2018.12.012
Gomes, J. F., Esteves, H. M. (2016). Deriving an indoor environmental index for portuguese office buildings. Technol., 4(4), 40. https://doi.org/10.3390/technologies4040040
Goshua, A., Akdis, C. A., Nadeau, K. C. (2022). World Health Organization global air quality guideline recommendations: Executive summary. Allergy, 77(7), 1955-1960. https://doi.org/10.1111/all.15224
Gunes, G., Yalçin, N., Çolaklar, H. (2022). Investigation of indoor air quality in university libraries in terms of gaseous and particulate pollutants in Bartin, Türkiye. Environ. Monit. Assess., 194(3), 1-15. https://doi.org/10.1007/s10661-022-09818-8
Guo, H., Lee, S. C., Chan, L. Y. (2004). Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong. Sci. Total Environ., 323(1-3), 87-98. https://doi.org/10.1016/j.scitotenv.2003.09.031
Hori, M., (2020). Total Volatile Organic Compound (TVOCs) as Index of Indoor Air Quality and Its Measuring and Evaluation. J. Hum. Environ. Syst., 23(1), 1-11.
Hu, J., Wang, Y., Ying, Q., Zhang, H. (2014). Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ., 95, 598-609. https://doi.org/10.1016/j.atmosenv.2014.07.019
Hu, Y., Zhao, B. (2020). Relationship between indoor and outdoor NO2: a review. Build. Environ., 180, 106909. https://doi.org/10.1016/j.buildenv.2020.106909
Kajtár, L., Herczeg, L., Lang, E. (2003). Examination of influence of CO2 concentration by scientific methods in the laboratory. Proceedings of healthy buildings, Proceedings 7th International Conference (7th-11th December 2003) - National University of Singapore, 3, 176-181.
Langer, S., Sahlberg, B., Duis, W. (2017). God innemiljö i energieffektiva byggnader. ISBN 978-91-88319-93-7. AB Stockholmshem; Miljöförvaltningen, Stockholms stad; Stiftelsen IVL.
Langer, S., Teli, D., Ekberg, L., (2018) Indoor Air Quality in energy-efficient buildings in Sweden: comparison with the Swedish residential housing stock and new conventional buildings. https://core.ac.uk/download/pdf/198050752.pdf
Lee, C. W., Dai, Y. T., Chien, C. H., Hsu, D. J. (2006). Characteristics and health impacts of volatile organic compounds in photocopy centers. Environ. Res., 100(2), 139-149. http://dx.doi.org/10.1016/j.envres.2005.05.003
Leung, D. Y. (2015). Outdoor-indoor air pollution in urban environment: challenges and opportunity. Front. Environ. Sci., 2, 69. https://doi.org/10.3389/fenvs.2014.00069
Leyva, D., Demeyer, S., Schalm, O., Anaf, W., Meert, C. (2016). New approach to indoors air quality assessment for cultural heritage conservation. Indoor Air, 784.
Lin, C. C., Peng, C. K. (2010). Characterization of indoor PM10, PM2.5, and ultrafine particles in elementary school classrooms: A review. Environ. Eng. Sci., 27(11), 915-922. https://doi.org/10.1089/ees.2010.0175
Luengas, A., Barona, A., Hort, C., Gallastegui, G., Platel, V., Elias, A. (2015). A review of indoor air treatment technologies. Rev. Environ. Sci. Bio/Technology, 14(3), 499-522. https://doi.org/ 10.1007/s11157-015-9363-9
Madureira, J., Paciência, I., Rufo, J., Ramos, E., Barros, H., Teixeira, J. P., de Oliveira Fernandes, E. (2015). Indoor air quality in schools and its relationship with children's respiratory symptoms. Atmos. Environ., 118, 145-156. https://doi.org/10.1016/j.atmosenv.2015.07.028
Mentese, S., Mirici, N. A., Otkun, M. T., Bakar, C., Palaz, E., Tasdibi, D., Cevizci, S., Cotuker, O. (2015). Association Between Respiratory Health And Indoor Air Pollution Exposure In Canakkale, Türkiye. Build. Environ., 93, 72-83. https://doi.org/10.1016/j.buildenv.2015.01.023
Moschandreas, D. J., Sofuoglu, S. C. (2004). The indoor environmental index and its relationship with symptoms of office building occupants. J. Air & Waste Manag. Assoc., 54(11), 1440-1451. https://doi.org/10.1080/10473289.2004.10470999
Moschandreas, D. J., Yoon, S. H., Demirev, D. (2006). Validation of the indoor environmental quality conceptual model. Build. Res. Inf., 34(5), 483-495. https://doi.org/10.1080/09613210600908367
Mui, K. W., Chan, W. T. (2005). A new indoor environmental quality equation for air-conditioned buildings. Archit. Sci. Rev., 48(1), 41-46. https://doi.org/10.3763/asre.2005.4806
Mujan, I., Licina, D., Kljajić, M., Čulić, A., Anđelković, A. S. (2021). Development of indoor environmental quality index using a low-cost monitoring platform. J. Clean. Prod., 312, 127846. https://doi.org/10.1016/j.jclepro.2021.127846
Ng, M. O., Qu, M., Zheng, P., Li, Z., Hang, Y. (2011). CO2-based demand controlled ventilation under new ASHRAE Standard 62.1-2010: a case study for a gymnasium of an elementary school at West Lafayette, Indiana. Energy Build., 43(11), 3216-3225. https://doi.org/10.1016/j.enbuild.2011.08.021
Ormandy, D., Ezratty, V. (2012). Health and thermal comfort: From WHO guidance to housing strategies. Energy Policy, 49, 116-121. https://doi.org/10.1016/j.enpol.2011.09.003
Persily, A. K. (2020). Quit Blaming ASHRAE Standard 62.1 for 1000 ppm CO2. In Proceedings of the 16th International Conference on Indoor Air Quality and Climate (INDOOR AIR 2020). Herndon, VA, USA: International Society of Indoor Air Quality and Climate (ISIAQ). Paper ID ABS-0445.
Piasecki, M., Kostyrko, K., Pykacz, S. (2017). Indoor environmental quality assessment: Part 1: Choice of the indoor environmental quality sub-component models. J. Build. Phys., 41(3), 264-289. https://doi.org/10.1177/1744259117702882
Saad, S. M., Shakaff, A. Y. M., Saad, A. R. M., Yusof, A. M., Andrew, A. M., Zakaria, A., Adom, A. H. (2017). Development of indoor environmental index: Air quality index and thermal comfort index. AIP Conf. Proc., 1808(1), 020043. https://doi.org/10.1063/1.4975276
Sahu, V., Gurjar, B. R. (2021). Spatio-temporal variations of indoor air quality in a university library. Int. J. Environ. Health Res., 31(5), 475-490. https://doi.org/10.1080/09603123.2019.1668916
Salonen, H., Salthammer, T., Morawska, L. (2019). Human exposure to NO2 in school and office indoor environments. Environ. Int. 130, 104887. https://doi.org/10.1016/j.envint.2019.05.081
Satish, U., Mendell, M. J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., Fisk, W. J. (2012). Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect., 120(12), 1671-1677. https://doi.org/10.1289/ehp.1104789
Seguel, J. M., Merrill, R., Seguel, D., Campagna, A. C. (2017). Indoor Air Quality. Am. J. Lifestyle Med., 11(4), 284-295. https://doi.org/10.1177/1559827616653343
Seppänen, O. A., Fisk, W. J., Mendell, M. J. (1999). Association of ventilation rates and CO2 concentrations with health andother responses in commercial and institutional buildings. Indoor Air, 9(4), 226-252. https://doi.org/ 10.1111/j.1600-0668.1999.00003.x
Sethi, J. K., Mittal, M. (2019). Ambient air quality estimation using supervised learning techniques. EAI.EU, 6(22), e8. https://doi.org/10.4108/eai.29-7-2019.159628
Settimo, G., Manigrasso, M., Avino, P. (2020). Indoor air quality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere, 11(4), 370. https://doi.org/10.3390/atmos11040370
Shaharon, M. N., Jalaludin, J. (2012). Thermal comfort assessment-A study toward workers' satisfaction in a low energy office building. Am. J. Appl. Sci., 9(7), 1037-1045. https://doi.org/10.3844/ajassp.2012.1037.1045
Shrestha, P. M., Humphrey, J. L., Carlton, E. J., Adgate, J. L., Barton, K. E., Root, E. D., Miller, S. L. (2019). Impact of outdoor air pollution on indoor air quality in low-income homes during wildfire seasons. International journal of environmental research and public health, 16(19), 3535. https://doi.org/10.3390/ijerph16193535
Spengler, John D., Jonathan M. Samet, and John F. McCarthy, eds. (2001). Indoor Air Quality Handbook. 1st ed. New York: McGRAW-HILL. https://www.accessengineeringlibrary.com/content/book/9780074455494
Spiru, P., Simona, P. L. (2017). A Review On Interactions Between Energy Performance Of The Buildings, Outdoor Air Pollution And The Indoor Air Quality. Energy Procedia, 128, 179-186. https://doi.org/10.1016/j.egypro.2017.09.039
Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A. (2021). Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. Environ. Chem. Lett., 19(2), 1715-1735. https://doi.org/10.1007/s10311-020-01126-2
Stamatelopoulou, A., Asimakopoulos, D. N., Maggos, T. (2019). Effects of PM, TVOCSs and comfort parameters on indoor air quality of residences with young children. Build. Environ., 150, 233-244. https://doi.org/10.1016/j.buildenv.2018.12.065
Sui, X., Tian, Z., Liu, H., Chen, H., Wang, D. (2021). Field measurements on indoor air quality of a residential building in Xi'an under different ventilation modes in winter. J. Build. Eng., 42, 103040. https://doi.org/10.1016/j.jobe.2021.103040
Ugranli, T., Toprak, M., Gursoy, G., Cimrin, A. H., Sofuoglu, S. C. (2015). Indoor environmental quality in chemistry and chemical engineering laboratories at Izmir Institute of Technology. Atmos. Pollut. Res., 6(1), 147-153. https://doi.org/10.5094/APR.2015.017
Virji, M. A., Liang, X., Su, F. C., LeBouf, R. F., Stefaniak, A. B., Stanton, M. L., Henneberger, P.K., Houseman, E. A. (2019). Peaks, means, and determinants of real-time TVOCs exposures associated with cleaning and disinfecting tasks in healthcare settings. Ann. Work Expo. Health, 63(7), 759-772. https://doi.org/10.1093/annweh/wxz059
Walker, K. (2022). In-Home Environmental Quality: Indices of Indoor Air Pollution and Indoor Discomfort and Their Patterns in Colorado Homes (Doctoral dissertation, Colorado State University).
Wei, W., Ramalho, O., Derbez, M., Ribéron, J., Kirchner, S., Mandin, C. (2016). Applicability and relevance of six indoor air quality indexes. Build. Environ., 109, 42-49. https://doi.org/10.1016/j.buildenv.2016.09.008
WHO, (2021). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 And PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide And Carbon Monoxide. https://apps.who.int/iris/handle/10665/345329. (Accessed 28.11.2022)
Wu, Y., Lu, Y., Chou, D. C. (2018). Indoor air quality investigation of a university library based on field measurement and questionnaire survey. Int. J. Low-Carbon Technol., 13(2), 148-160. https://doi.org/10.1093/ijlct/cty007
Zhang, J., Smith, K. R. (2003). Indoor air pollution: a global health concern. Br. Med. Bull., 68(1), 209-225. https://doi.org/10.1093/bmb/ldg029
Zhang, X., Wargocki, P., Lian, Z., Thyregod, C. (2017). Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self‐assessed acute health symptoms, and cognitive performance. Indoor Air, 27(1), 47-64.https://doi.org/10.1111/ina.12284
Zhao, B., Shi, S., Ji, J. S. (2022). The WHO Air Quality Guidelines 2021 promote great challenge for indoor air. Sci. Total Environ., 827, 154376. https://doi.org/10.1016/j.scitotenv.2022.154376
Zhu, Y.D., Li, X., Fan, L., Li, L., Wang, J., Yang, W.J., Wang, L., Yao, X.Y., Wang, X.L. (2021). Indoor air quality in the primary school of China—results from CIEHS 2018 study. Environ. Pollut., 291, 118094. https://doi.org/10.1016/j.envpol.2021.118094
Zoran, M. A., Savastru, R. S., Savastru, D. M., Tautan, M. N. (2020). Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ., 738, 139825. http://doi: 10.1016/j.scitotenv.2020.139825