Evaluation of indoor air quality by indoor environmental index in market places in Istanbul/Türkiye during Covid-19 pandemic


  • Hakan Güney Department of Environmental Engineering, Faculty of Engineering, University of Cukurova, Balcali, 01330, Adana, Türkiye
  • Bayan Saada Department of Environmental Engineering, Faculty of Engineering, University of Cukurova, Balcali, 01330, Adana, Türkiye
  • Melis Çelik Güney Department of Animal Science, Faculty of Agriculture, University of Cukurova, Balcali, 01330, Adana, Türkiye
  • Bülent Sarı Department of Environmental Engineering, Faculty of Engineering, University of Cukurova, Balcali, 01330, Adana, Türkiye
  • Olcayto Keskinkan Department of Environmental Engineering, Faculty of Engineering, University of Cukurova, Balcali, 01330, Adana, Türkiye


Indoor Air Quality, Indoor Environmental Index, Marketplaces, COVID-19


This is the first study to evaluate the indoor air quality of markets using the “Indoor Environmental Index (IEI)”. In the study, carbon dioxide (CO2), relative humidity, temperature, particulate matter, and total volatile organic compounds were measured as indoor air quality parameters in four different markets in Istanbul during the COVID-19 pandemic. Data were analyzed and evaluated using IBM SPSS Statistics 22 program. While CO2, Paticulate matters (PM2.5, PM10), humidity, and temperature had a statistically significant difference in different markets, no statistically significant difference was found for NO2 and total volatile organic compounds (p>0.05). Considering the different hours in a day, it was determined that there was a statistically significant difference for all parameters. The highest and strongest correlation between the parameters was found between PM2.5 and PM10 (r=0.703, p<0.01). The IEI values for 4 different markets in different time intervals in a day were found as 6.862, 6.775, 8.816, and 6.244, respectively. The highest and lowest Indoor Environmental Index values were calculated in market2 (7,525) and market4 (4,936), respectively. Indoor air quality parameters had an impact on the IEI results as they affected the pollution index and the discomfort index. As a result of the study, it was seen that the density of customers and products, the size of the closed area of the markets, and the capacity of ventilation equipment affect the indoor air quality. All these results were evaluated and suggestions were made about the visit times to the markets.


Abdullah, S., Abd Hamid, F. F., Ismail, M., Ahmed, A. N., Mansor, W. N. W. (2019). Data on Indoor Air Quality (IAQ) in kindergartens with different surrounding activities. Data Brief, 25, 103969. https://doi.org/10.1016/j.dib.2019.103969

Abdullah, S., Shukor, M. S. M., Shahrudin, D., Ismail, M. (2018). The assessment of indoor air quality (IAQ) at refinery industry. Int. J. Civ. Eng. Technol, 9, 925-932. ISSN Print: 0976-6308 and ISSN Online: 0976-6316

Abdul-Wahab, S. A., En, S. C. F., Elkamel, A., Ahmadi, L., Yetilmezsoy, K. (2015). A review of standards and guidelines set by international bodies for the parameters of indoor air quality. Atmos. Pollut. Res., 6(5), 751-767. https://doi.org/10.5094/APR.2015.084

Agarwal, N., Meena, C. S., Raj, B. P., Saini, L., Kumar, A., Gopalakrishnan, N., Aggarwal, V. (2021). Indoor air quality improvement in COVID-19 pandemic. Sustain. Cities Soc., 70, 102942. https://doi.org/10.1016/j.scs.2021.102942

ASHRAE (2009). American Society of Heating, Refrigerating and Air-conditioning Engineers. Indoor Air Quality Guide: Best Practices For Design, Construction, And Commissioning. ISBN: 978-1-933742-59-5

Awang, N. R., Ramli, N. A., Yahaya, A. S., Elbayoumi, M. (2015). Multivariate methods to predict ground level ozone during daytime, nighttime, and critical conversion time in urban areas. Atmos. Pollut. Res., 6(5), 726-734. https://doi.org/10.5094/APR.2015.081

Bashir, M. F., Jiang, B., Komal, B., Bashir, M. A., Farooq, T. H., Iqbal, N., Bashir, M. (2020). Correlation between environmental pollution indicators and COVID-19 pandemic: a brief study in Californian context. Environ. Res., 187, 109652. https://doi.org/10.1016/j.envres.2020.109652

Bentayeb, M., Norback, D., Bednarek, M., Bernard, A., Cai, G., Cerrai, S., Eleftheriou, K. K., Gratziou, C., Holst, G. J., Lavaud, F., Nasilowski, J., Sestini, P., Sarno, G., Sigsgaard, T., Wieslander, G., Zielinski, J., Viegi, G., Annesi-Maesano, I. (2015). Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe. Eur. Respir. J., 45(5), 1228-1238. https://doi: 10.1183/09031936.00082414

Beyhan, H. C., Eren, G., Aktuğ, B. (2020). Optimal Location Selection for Retail Market Locations with GIS Based Multi Criteria AHP Method: The Case of Istanbul. AKU J. Sci. Eng., 20(6), 1032-1050. https://doi.org/10.35414/akufemubid.803391

Bralewska, K., Rogula-Kozłowska, W., Bralewski, A. (2022). Indoor air quality in sports center: Assessment of gaseous pollutants. Build. Environ., 208, 108589. https://doi.org/10.1016/j.buildenv.2021.108589

Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G., Sousa, S. I. V. (2014). Indoor air quality in urban nurseries at Porto city: Particulate matter assessment. Atmos. Environ., 84, 133-143. https://doi.org/10.1016/j.atmosenv.2013.11.035

Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G., & Sousa, S. I. (2019). Quantifying indoor air quality determinants in urban and rural nursery and primary schools. Environ. Res., 176, 108534. https://doi.org/10.1016/j.envres.2019.108534

Cabovská, B., Bekö, G., Teli, D., Ekberg, L., Dalenbäck, J. O., Wargocki, P., Langer, S. (2022). Ventilation strategies and indoor air quality in Swedish primary school classrooms. Build. Environ., 109744. https://doi.org/10.1016/j.buildenv.2022.109744

Chen, Y. H., Tu, Y. P., Sung, S. Y., Weng, W. C., Huang, H. L., Tsai, Y. I. (2022). A comprehensive analysis of the intervention of a fresh air ventilation system on indoor air quality in classrooms. Atmos. Pollut. Res., 13(4), 101373. https://doi.org/10.1016/j.apr.2022.101373

Chiang, C. M., Lai, C. M. (2002). A study on the comprehensive indicator of indoor environment assessment for occupants’ health in Taiwan. Build. Environ., 37(4), 387-392. https://doi.org/10.1016/S0360-1323(01)00034-8

Circular Letter, 2020a. Supplementary Circular of the Ministry of Interior of the Republic of Türkiye on Markets within the Scope of Combating the Coronavirus Outbreak dated 24.03.2020. https://www.icisleri.gov.tr/koronavirus-salgini-ile-mucadele-kapsaminda-marketlerle-ilgili-ek-genelge

Circular Letter, 2020b. Within the Scope of Combating Coronavirus - New Restrictions and Measures Circulars. Ministry of Interior of the Republic of Türkiye Circular, dated 01.12.2020 https://www.icisleri.gov.tr/koronavirus-ile-mucadele-kapsaminda-sokaga-cikma-kisitlamalari---yeni-kisitlama-ve-tedbirler-genelgeleri

Comunian, S., Dongo, D., Milani, C., Palestini, P. (2020). Air pollution and COVID-19: the role of particulate matter in the spread and increase of COVID-19’s morbidity and mortality. Int. J. Environ. Res. Public Health, 17(12), 4487. https://doi.org/10.3390/ijerph17124487

Davis, R. E., McGregor, G. R., Enfield, K. B. (2016). Humidity: A review and primer on atmospheric moisture and human health. Environ. Res., 144, 106-116. http://dx.doi.org/10.1016/j.envres.2015.10.014

De Gennaro, G., Dambruoso, P. R., Loiotile, A. D., Di Gilio, A., Giungato, P., Tutino, M., Marzocca, A., Mazzone, A., Palmisani, J., Porcelli, F. (2014). Indoor air quality in schools. Environ. Chem. Lett., 12(4), 467-482. https://doi.org/10.1007/s10311-014-0470-6

EMSG, 2020. COVID-19 Epidemic Management and Study Guide (dated: 26.06.2020, page: 107). Ministry of Health of the Republic of Türkiye. https://covid19.saglik.gov.tr/Eklenti/37722/0/covid-19salginyonetimivecalismarehberipdf.pdf

Farooq, M., Azadfar, E., Rusu, A., Trif, M., Poushi, M. K., Wang, Y. (2021). Improving the shelf life of peeled fresh almond kernels by edible coating with mastic gum. Coatings, 11(6), 618. https://doi.org/10.3390/coatings11060618

Fermo, P., Artíñano, B., De Gennaro, G., Pantaleo, A. M., Parente, A., Battaglia, F., Colicino, E., Di Tanna, G., Da Silva Junior, A., G., Pereira, I., G., Garcia, G., S., Goncalves, L., M., G., Comite, V., Miani, A. (2021). Improving indoor air quality through an air purifier able to reduce aerosol particulate matter (PM) and volatile organic compounds (TVOCs): Experimental results. Environ. Res., 197, 111131. https://doi.org/10.1016/j.envres.2021.111131

Fernández-Agüera, J., Dominguez-Amarillo, S., Fornaciari, M., Orlandi, F. (2019). TVOCs and PM 2.5 in naturally ventilated homes: three case studies in a mild climate. Sustainability, 11(22), 6225. https://doi.org/10.3390/su11226225.

Fresán, U., Sabaté, J. (2019). Vegetarian diets: planetary health and its alignment with human health. Adv. Nutr., 10 (Supplement_4), S380-S388. https://doi.org/10.1093/advances/nmz019

Fromme, H., Debiak, M., Sagunski, H., Röhl, C., Kraft, M., Kolossa-Gehring, M. (2019). The German approach to regulate indoor air contaminants. Int. J. Hyg. Environ. Health, 222(3), 347-354. https://doi.org/10.1016/j.ijheh.2018.12.012

Gomes, J. F., Esteves, H. M. (2016). Deriving an indoor environmental index for portuguese office buildings. Technol., 4(4), 40. https://doi.org/10.3390/technologies4040040

Goshua, A., Akdis, C. A., Nadeau, K. C. (2022). World Health Organization global air quality guideline recommendations: Executive summary. Allergy, 77(7), 1955-1960. https://doi.org/10.1111/all.15224

Gunes, G., Yalçin, N., Çolaklar, H. (2022). Investigation of indoor air quality in university libraries in terms of gaseous and particulate pollutants in Bartin, Türkiye. Environ. Monit. Assess., 194(3), 1-15. https://doi.org/10.1007/s10661-022-09818-8

Guo, H., Lee, S. C., Chan, L. Y. (2004). Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong. Sci. Total Environ., 323(1-3), 87-98. https://doi.org/10.1016/j.scitotenv.2003.09.031

Hori, M., (2020). Total Volatile Organic Compound (TVOCs) as Index of Indoor Air Quality and Its Measuring and Evaluation. J. Hum. Environ. Syst., 23(1), 1-11.

Hu, J., Wang, Y., Ying, Q., Zhang, H. (2014). Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ., 95, 598-609. https://doi.org/10.1016/j.atmosenv.2014.07.019

Hu, Y., Zhao, B. (2020). Relationship between indoor and outdoor NO2: a review. Build. Environ., 180, 106909. https://doi.org/10.1016/j.buildenv.2020.106909

Kajtár, L., Herczeg, L., Lang, E. (2003). Examination of influence of CO2 concentration by scientific methods in the laboratory. Proceedings of healthy buildings, Proceedings 7th International Conference (7th-11th December 2003) - National University of Singapore, 3, 176-181.

Langer, S., Sahlberg, B., Duis, W. (2017). God innemiljö i energieffektiva byggnader. ISBN 978-91-88319-93-7. AB Stockholmshem; Miljöförvaltningen, Stockholms stad; Stiftelsen IVL.

Langer, S., Teli, D., Ekberg, L., (2018) Indoor Air Quality in energy-efficient buildings in Sweden: comparison with the Swedish residential housing stock and new conventional buildings. https://core.ac.uk/download/pdf/198050752.pdf

Lee, C. W., Dai, Y. T., Chien, C. H., Hsu, D. J. (2006). Characteristics and health impacts of volatile organic compounds in photocopy centers. Environ. Res., 100(2), 139-149. http://dx.doi.org/10.1016/j.envres.2005.05.003

Leung, D. Y. (2015). Outdoor-indoor air pollution in urban environment: challenges and opportunity. Front. Environ. Sci., 2, 69. https://doi.org/10.3389/fenvs.2014.00069

Leyva, D., Demeyer, S., Schalm, O., Anaf, W., Meert, C. (2016). New approach to indoors air quality assessment for cultural heritage conservation. Indoor Air, 784.

Lin, C. C., Peng, C. K. (2010). Characterization of indoor PM10, PM2.5, and ultrafine particles in elementary school classrooms: A review. Environ. Eng. Sci., 27(11), 915-922. https://doi.org/10.1089/ees.2010.0175

Luengas, A., Barona, A., Hort, C., Gallastegui, G., Platel, V., Elias, A. (2015). A review of indoor air treatment technologies. Rev. Environ. Sci. Bio/Technology, 14(3), 499-522. https://doi.org/ 10.1007/s11157-015-9363-9

Madureira, J., Paciência, I., Rufo, J., Ramos, E., Barros, H., Teixeira, J. P., de Oliveira Fernandes, E. (2015). Indoor air quality in schools and its relationship with children's respiratory symptoms. Atmos. Environ., 118, 145-156. https://doi.org/10.1016/j.atmosenv.2015.07.028

Mentese, S., Mirici, N. A., Otkun, M. T., Bakar, C., Palaz, E., Tasdibi, D., Cevizci, S., Cotuker, O. (2015). Association Between Respiratory Health And Indoor Air Pollution Exposure In Canakkale, Türkiye. Build. Environ., 93, 72-83. https://doi.org/10.1016/j.buildenv.2015.01.023

Moschandreas, D. J., Sofuoglu, S. C. (2004). The indoor environmental index and its relationship with symptoms of office building occupants. J. Air & Waste Manag. Assoc., 54(11), 1440-1451. https://doi.org/10.1080/10473289.2004.10470999

Moschandreas, D. J., Yoon, S. H., Demirev, D. (2006). Validation of the indoor environmental quality conceptual model. Build. Res. Inf., 34(5), 483-495. https://doi.org/10.1080/09613210600908367

Mui, K. W., Chan, W. T. (2005). A new indoor environmental quality equation for air-conditioned buildings. Archit. Sci. Rev., 48(1), 41-46. https://doi.org/10.3763/asre.2005.4806

Mujan, I., Licina, D., Kljajić, M., Čulić, A., Anđelković, A. S. (2021). Development of indoor environmental quality index using a low-cost monitoring platform. J. Clean. Prod., 312, 127846. https://doi.org/10.1016/j.jclepro.2021.127846

Ng, M. O., Qu, M., Zheng, P., Li, Z., Hang, Y. (2011). CO2-based demand controlled ventilation under new ASHRAE Standard 62.1-2010: a case study for a gymnasium of an elementary school at West Lafayette, Indiana. Energy Build., 43(11), 3216-3225. https://doi.org/10.1016/j.enbuild.2011.08.021

Ormandy, D., Ezratty, V. (2012). Health and thermal comfort: From WHO guidance to housing strategies. Energy Policy, 49, 116-121. https://doi.org/10.1016/j.enpol.2011.09.003

Persily, A. K. (2020). Quit Blaming ASHRAE Standard 62.1 for 1000 ppm CO2. In Proceedings of the 16th International Conference on Indoor Air Quality and Climate (INDOOR AIR 2020). Herndon, VA, USA: International Society of Indoor Air Quality and Climate (ISIAQ). Paper ID ABS-0445.

Piasecki, M., Kostyrko, K., Pykacz, S. (2017). Indoor environmental quality assessment: Part 1: Choice of the indoor environmental quality sub-component models. J. Build. Phys., 41(3), 264-289. https://doi.org/10.1177/1744259117702882

Saad, S. M., Shakaff, A. Y. M., Saad, A. R. M., Yusof, A. M., Andrew, A. M., Zakaria, A., Adom, A. H. (2017). Development of indoor environmental index: Air quality index and thermal comfort index. AIP Conf. Proc., 1808(1), 020043. https://doi.org/10.1063/1.4975276

Sahu, V., Gurjar, B. R. (2021). Spatio-temporal variations of indoor air quality in a university library. Int. J. Environ. Health Res., 31(5), 475-490. https://doi.org/10.1080/09603123.2019.1668916

Salonen, H., Salthammer, T., Morawska, L. (2019). Human exposure to NO2 in school and office indoor environments. Environ. Int. 130, 104887. https://doi.org/10.1016/j.envint.2019.05.081

Satish, U., Mendell, M. J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., Fisk, W. J. (2012). Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect., 120(12), 1671-1677. https://doi.org/10.1289/ehp.1104789

Seguel, J. M., Merrill, R., Seguel, D., Campagna, A. C. (2017). Indoor Air Quality. Am. J. Lifestyle Med., 11(4), 284-295. https://doi.org/10.1177/1559827616653343

Seppänen, O. A., Fisk, W. J., Mendell, M. J. (1999). Association of ventilation rates and CO2 concentrations with health andother responses in commercial and institutional buildings. Indoor Air, 9(4), 226-252. https://doi.org/ 10.1111/j.1600-0668.1999.00003.x

Sethi, J. K., Mittal, M. (2019). Ambient air quality estimation using supervised learning techniques. EAI.EU, 6(22), e8. https://doi.org/10.4108/eai.29-7-2019.159628

Settimo, G., Manigrasso, M., Avino, P. (2020). Indoor air quality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere, 11(4), 370. https://doi.org/10.3390/atmos11040370

Shaharon, M. N., Jalaludin, J. (2012). Thermal comfort assessment-A study toward workers' satisfaction in a low energy office building. Am. J. Appl. Sci., 9(7), 1037-1045. https://doi.org/10.3844/ajassp.2012.1037.1045

Shrestha, P. M., Humphrey, J. L., Carlton, E. J., Adgate, J. L., Barton, K. E., Root, E. D., Miller, S. L. (2019). Impact of outdoor air pollution on indoor air quality in low-income homes during wildfire seasons. International journal of environmental research and public health, 16(19), 3535. https://doi.org/10.3390/ijerph16193535

Spengler, John D., Jonathan M. Samet, and John F. McCarthy, eds. (2001). Indoor Air Quality Handbook. 1st ed. New York: McGRAW-HILL. https://www.accessengineeringlibrary.com/content/book/9780074455494

Spiru, P., Simona, P. L. (2017). A Review On Interactions Between Energy Performance Of The Buildings, Outdoor Air Pollution And The Indoor Air Quality. Energy Procedia, 128, 179-186. https://doi.org/10.1016/j.egypro.2017.09.039

Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A. (2021). Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. Environ. Chem. Lett., 19(2), 1715-1735. https://doi.org/10.1007/s10311-020-01126-2

Stamatelopoulou, A., Asimakopoulos, D. N., Maggos, T. (2019). Effects of PM, TVOCSs and comfort parameters on indoor air quality of residences with young children. Build. Environ., 150, 233-244. https://doi.org/10.1016/j.buildenv.2018.12.065

Sui, X., Tian, Z., Liu, H., Chen, H., Wang, D. (2021). Field measurements on indoor air quality of a residential building in Xi'an under different ventilation modes in winter. J. Build. Eng., 42, 103040. https://doi.org/10.1016/j.jobe.2021.103040

Ugranli, T., Toprak, M., Gursoy, G., Cimrin, A. H., Sofuoglu, S. C. (2015). Indoor environmental quality in chemistry and chemical engineering laboratories at Izmir Institute of Technology. Atmos. Pollut. Res., 6(1), 147-153. https://doi.org/10.5094/APR.2015.017

Virji, M. A., Liang, X., Su, F. C., LeBouf, R. F., Stefaniak, A. B., Stanton, M. L., Henneberger, P.K., Houseman, E. A. (2019). Peaks, means, and determinants of real-time TVOCs exposures associated with cleaning and disinfecting tasks in healthcare settings. Ann. Work Expo. Health, 63(7), 759-772. https://doi.org/10.1093/annweh/wxz059

Walker, K. (2022). In-Home Environmental Quality: Indices of Indoor Air Pollution and Indoor Discomfort and Their Patterns in Colorado Homes (Doctoral dissertation, Colorado State University).

Wei, W., Ramalho, O., Derbez, M., Ribéron, J., Kirchner, S., Mandin, C. (2016). Applicability and relevance of six indoor air quality indexes. Build. Environ., 109, 42-49. https://doi.org/10.1016/j.buildenv.2016.09.008

WHO, (2021). WHO Global Air Quality Guidelines: Particulate Matter (‎PM2.5 And PM10)‎, Ozone, Nitrogen Dioxide, Sulfur Dioxide And Carbon Monoxide. https://apps.who.int/iris/handle/10665/345329. (Accessed 28.11.2022)

Wu, Y., Lu, Y., Chou, D. C. (2018). Indoor air quality investigation of a university library based on field measurement and questionnaire survey. Int. J. Low-Carbon Technol., 13(2), 148-160. https://doi.org/10.1093/ijlct/cty007

Zhang, J., Smith, K. R. (2003). Indoor air pollution: a global health concern. Br. Med. Bull., 68(1), 209-225. https://doi.org/10.1093/bmb/ldg029

Zhang, X., Wargocki, P., Lian, Z., Thyregod, C. (2017). Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self‐assessed acute health symptoms, and cognitive performance. Indoor Air, 27(1), 47-64.https://doi.org/10.1111/ina.12284

Zhao, B., Shi, S., Ji, J. S. (2022). The WHO Air Quality Guidelines 2021 promote great challenge for indoor air. Sci. Total Environ., 827, 154376. https://doi.org/10.1016/j.scitotenv.2022.154376

Zhu, Y.D., Li, X., Fan, L., Li, L., Wang, J., Yang, W.J., Wang, L., Yao, X.Y., Wang, X.L. (2021). Indoor air quality in the primary school of China—results from CIEHS 2018 study. Environ. Pollut., 291, 118094. https://doi.org/10.1016/j.envpol.2021.118094

Zoran, M. A., Savastru, R. S., Savastru, D. M., Tautan, M. N. (2020). Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ., 738, 139825. http://doi: 10.1016/j.scitotenv.2020.139825






Biological Science