Enhanced Heterologous Immuno-Boost (EHIB) Covid-19 Vaccines: a NOVEL CONCEPT
Keywords:
Heterologous, Homologous, Cytokine Storm, CD4 Cells, CD8 Cells, Pfizer (mRNA), Sinopharm (inactivated Virus Vaccine)Abstract
Heterologous immunization with Covid-19 Vaccines may induce a superior immune response. There are 5 different platforms for Covid-19 vaccines and about 16 different vaccines developed. All these vaccines induce an immune response, some have a better humoral response and lesser cellular response while others have better cellular response than the humoral response. Our concerns about this issue; there are SARS-CoV2 variants, and some vaccines have reduced efficacy against infection due to these variants. Secondly the strength and the type of the immune response. Thirdly length of the time that humoral response lasts and when one must take the booster. To address the above concerns, we recommend having heterologous vaccination with two different types of vaccines and there is a strong possibility that the above concerns can be addressed. For this, we have selected mRNA (Pfizer) and Inactivated Virus (Sinopharm) vaccines. There are several animal studies where immune response with heterologous vaccines was much stronger and lasting as compared to single vaccines but no human study. We strongly believe that with heterologous vaccines there will be a much stronger and longer-lasting immune response and maybe more effective against the variants. Considering the lack of human studies, I had both Sinopharm and Pfizer vaccines and will monitor humoral immune response.
References
Amanat, F., Thapa, M., Lei, T., Ahmed, S. M. S., Adelsberg, D. C., Carreno, J. M., et al., (2021). The plasmablast response to SARS-CoV-2 mRNA vaccination is dominated by non-neutralizing antibodies and targets both the NTD and the RBD. medRxiv. doi: 10.1101/2021.03.07.21253098
Assis, R., Jain, A., Nakajima, R., Jasinskas, A., Kahn, S., Palma, A., et al., (2021). Substantial differences in SARS-CoV-2 antibody responses elicited by natural infection and mRNA vaccination. BioRxiv, 6(1), 132.
Aydillo, T., Rombauts, A., Stadlbauer, D., Aslam, S., Abelenda-Alonso, G., Escalera, A., et al., (2020). Antibody immunological imprinting on COVID-19 patients. MedRxiv. doi: https://doi.org/10.1101/2020.10.14.20212662
Barnes, C. O., West Jr, A. P., Huey-Tubman, K. E., Hoffmann, M. A., Sharaf, N. G., Hoffman, P. R., et al., (2020). Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell, 182(4), 828-842.
Berry, J. D., Hay, K., Rini, J. M., Yu, M., Wang, L., Plummer, F. A., et al., (2010, January). Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. In MAbs (Vol. 2, No. 1, pp. 53-66). Taylor & Francis.
Bonilla, F. A., Oettgen, H. C. (2010). Adaptive immunity. Journal of Allergy and Clinical Immunology, 125(2), S33-S40.
Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., Hao, M., et al., (2020). A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science, 369(6504), 650-655.
Choi, B., Choudhary, M. C., Regan, J., Sparks, J. A., Padera, R. F., Qiu, X., et al., (2020). Persistence and evolution of SARS-CoV-2 in an immunocompromised host. New England Journal of Medicine, 383(23), 2291-2293.
Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday, J. D., et al., (2021). Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science, 372(6538), eabg3055.
Dyer, O. (2021). Covid-19: Chinese vaccines may need changes to improve efficacy, admits official. British Medical Journal, 373, n969.
Excler, J.L., Kim, J.H. (2019). Novel prime-boost vaccine strategies against HIV-1. Expert Rev Vaccines, 18, 765–779.
Finkelstein, M. T., Mermelstein, A. G., Parker Miller, E., Seth, P. C., Stancofski, E. S. D., Fera, D. (2021). Structural analysis of neutralizing epitopes of the SARS-CoV-2 spike to guide therapy and vaccine design strategies. Viruses, 13(1), 134.
Gil, A., Shen, S., Coley, S., Gibson, L., Diamond, D. J., Wang, S., Lu, S. (2013). DNA vaccine prime followed by boost with live attenuated virus significantly improves antigen-specific T cell responses against human cytomegalovirus. Human vaccines & immunotherapeutics, 9(10), 2120-2132.
He, Q., Mao, Q., An, C., Zhang, J., Gao, F., Bian, L., et al., (2021). Heterologous prime-boost: breaking the protective immune response bottleneck of COVID-19 vaccine candidates. Emerging microbes & infections, 10(1), 629-637.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., et al., (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell, 181(2), 271-280.
Khoury, D. S., Cromer, D., Reynaldi, A., Schlub, T. E., Wheatley, A. K., Juno, J. A., et al., (2021). Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature medicine, 27(7), 1205-1211.
Link 1. https://www.aa.com.tr/en/europe/spain-to-start-clinical-trial-on-mixing-covid-vaccines/2213975 Accessed 15. 12. 2022
Link 2. COVID-19 vaccine: the eight technologies being tested, https://www.intvetvaccnet.co.uk/blog/covid-19/vaccine-eight-types-being-tested Accessed 15. 12. 2022 Accessed 15. 12. 2022
Link 3. COVID-19 Immunity & Clinical Manifestations CORONAVIRUS (COVID-19) UPDATE NO. 24 https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update-24-immuniy-n-clinical-manifestations.pdf?sfvrsn=7c84a6bf_4 Accessed 15. 12. 2022
Link 4. Update on COVID-19 Vaccines and immune response-The latest on the COVID-19 Global situatation and vaccines (WHO) LAST UPDATE: https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update73_covid-19-vaccines-and-immune-response.pdf?sfvrsn=7902cc35_5 Accessed 15. 12. 2022
Link 5. https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update52_vaccines.pdf?sfvrsn=b11be994_4 Accessed 15. 12. 2022
Link 6. Covid-19 Immunity & Clinical Manifestations- https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update-24-immuniy-n-clinical-manifestations.pdf?sfvrsn=7c84a6bf_4 Accessed 15. 12. 2022
Link 7. https://comcovstudy.org.uk/about-com-cov2 Accessed 15. 12. 2022
Link 8. Why mixing vaccines could help boost immunity. New trials on mixing different types of vaccines are underway. Could vaccine combinations help stop variants from bypassing our immune systems? https://www.technologyreview.com/2021/05/06/1024640/why-mixing-vaccines-could-help-boost-immunity/ Accessed 15. 12. 2022
Link 9. https://www.biocat.com/corona-antibodies Accessed 15. 12. 2022
Link 10. https://www.upmc.com/coronavirus/covid-vaccine Accessed 15. 12. 2022
Link 11. https://clinicaltrials.gov/ct2/show/NCT04805216 Accessed 15. 12. 2022
Mahase, E. (2021). Covid-19: Moderna and Novavax vaccines to be tested in mixing vaccines trial. British Medical Journal, 373, n971
Olliaro, P., Torreele, E., Vaillant, M. (2021). COVID-19 vaccine efficacy and effectiveness—the elephant (not) in the room. The Lancet Microbe, 2(7), e279-e280.
Pierce, C. A., Sy, S., Galen, B., Goldstein, D. Y., Orner, E., Keller, M. J., et al., (2021). Natural mucosal barriers and COVID-19 in children. JCI insight, 6(9), e148694
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., et al., (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England journal of medicine.
Ramasamy, M. N., Minassian, A. M., Ewer, K. J., Flaxman, A. L., Folegatti, P. M., Owens, D. R., et al., (2020). Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. The Lancet, 396(10267), 1979-1993.
Schwarzkopf, S., Krawczyk, A., Knop, D., Klump, H., Heinold, A., Heinemann, F. M., et al., (2021). Cellular immunity in COVID-19 convalescents with PCR-confirmed infection but with undetectable SARS-CoV-2–specific IgG. Emerging infectious diseases, 27(1), 122.
Song, G., He, W. T., Callaghan, S., Anzanello, F., Huang, D., Ricketts, J., et al., (2021). Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nature communications, 12(1), 1-10.
Speiser, D. E., Bachmann, M. F. (2020). COVID-19: Mechanisms of vaccination and immunity. Vaccines, 8(3), 404.
Spencer, A. J., McKay, P. F., Belij-Rammerstorfer, S., Ulaszewska, M., Bissett, C. D., Hu, K., et al., (2021). Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice. Nature communications, 12(1), 1-8.
Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., et al., (2020). Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. MedRxiv.
Wang, S., Parker, C., Taaffe, J., Solórzano, A., García-Sastre, A., Lu, S. (2008). Heterologous HA DNA vaccine prime—inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine, 26(29-30), 3626-3633.
Yang, S., Li, Y., Dai, L., Wang, J., He, P., Li, C., et al., (2021). Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. The Lancet Infectious Diseases, 21(8), 1107-1119.
Zhang, J., Zeng, H., Gu, J., Li, H., Zheng, L., Zou, Q. (2020). Progress and prospects on vaccine development against SARS-CoV-2. Vaccines, 8(2), 153.
Zhu, F. C., Guan, X. H., Li, Y. H., Huang, J. Y., Jiang, T., Hou, L. H., et al., (2020). Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet, 396(10249), 479-488.
Zuo, J., Dowell, A. C., Pearce, H., Verma, K., Long, H. M., Begum, J., et al., (2021). Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nature immunology, 22(5), 620-626.