The Role of Nigella sativa and Its Active Component Thymoquınone in Cancer Prevention and Treatment: A Review Article

Ayşe Güneş Bayır, İrem Karakaş


Thymoquinone is the major active component of the black seed, best known as Nigella sativa. Cancer, also known as the plague of our age, is the uncontrolled cell proliferation caused by the disruption of cell proliferation. The antitumor, antioxidant, antiproliferative and antimetastatic effects of Nigella sativa and thymoquinone have been proven by various scientific studies. Nigella sativa and thymoquinone are utilizable for potential agents in the prevention and treatment of various cancers by stimulating different pathways such as increasing the release of apoptotic molecules, suppressing the release of pro-apoptotic molecules and repairing oxidative stress. Nigella sativa extract dose-dependently inhibited cell proliferation in breast cell lines by the AKT/ PI3K pathway or induced apoptosis by increasing caspase-3, caspase-8, caspase-9 and p53 expression. In addition, Nigella sativa extract indicated a synergistic effect combined with radiation therapy against breast cancer. Thymoquinone suppressed tumor growth by regulating cell cycle progression in hepatocellular carcinoma. Thymoquinone showed an apoptosis-enhancing effect on colon cancer. Thymoquinone application into rats with leukemia showed a suppression effect on progression of leukemia. There is no toxic effects or mortality were observed in the range of 10-100 mg/kg thymoquinone maintaining. The median infective dose (ID50) of Nigella sativa extracts and thymoquinone are lower in oral administration compared to intraperitoneal administration. Thymoquinone was found more effective in capsule form as a nanoparticle than free form. The aim of this review is to examine the role of Nigella sativa and thymoquinone, in the prevention and treatment of cancers in the light of current literature.


Nigella sativa; Thymoquinone; Cancers

Full Text:



Abdel-Hamid, N. M., Abdel-Ghany, M. I., Nazmy, M. H., ve Amgad, S. W. (2013). Can methanolic extract of Nigella sativa seed affect glyco-regulatory enzymes in experimental hepatocellular carcinoma?. Environmental health and preventive medicine, 18(1), 49–56.

Abukhader, M. M. (2012). The effect of route of administration in thymoquinone toxicity in male and female rats. Indian journal of pharmaceutical sciences, 74(3), 195–200.

Abukhader, M. M. (2013). Thymoquinone in the clinical treatment of cancer: Fact or fiction?. Pharmacognosy reviews, 7(14), 117–120.

Alhazmi, M. I., Hasan, T. N., Shafi, G., Al-Assaf, A. H., Alfawaz, M. A., ve Alshatwi, A. A. (2014). Roles of p53 and caspases in induction of apoptosis in MCF- 7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds. Asian Pacific journal of cancer prevention: APJCP, 15(22), 9655–9660.

Ali, B. H., ve Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytotherapy research: PTR, 17(4), 299–305.

Al-Sheddi, E. S., Farshori, N. N., Al-Oqail, M. M., Musarrat, J., Al-Khedhairy, A. A., ve Siddiqui, M. A. (2014). Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pacific journal of cancer prevention: APJCP, 15(2), 983–987.

Amin, B., ve Hosseinzadeh, H. (2016). Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects. Planta medica, 82(1-2), 8–16.

Barkat, M. A., Harshita, Ahmad, J., Khan, M. A., Beg, S., ve Ahmad, F. J. (2018). Insights into the Targeting Potential of Thymoquinone for Therapeutic Intervention Against Triple-negative Breast Cancer. Current drug targets, 19(1), 70–80.

Cikman, O., Ozkan, A., Aras, A. B., Soylemez, O., Alkis, H., Taysi, S., ve ark. (2014). Radioprotective effects of Nigella sativa oil against oxidative stress in liver tissue of rats exposed to total head irradiation. Journal of investigative surgery: the official journal of the Academy of Surgical Research, 27(5), 262–266.

Darakhshan, S., Bidmeshki Pour, A., Hosseinzadeh Colagar, A., ve Sisakhtnezhad, S. (2015). Thymoquinone and its therapeutic potentials. Pharmacological research, 95-96, 138–158.

Dilshad, A., Abulkhair, O., Nemenqani, D., ve Tamimi, W. (2012). Antiproliferative properties of methanolic extract of Nigella sativa against the MDA-MB-231 cancer cell line. Asian Pacific journal of cancer prevention: APJCP, 13(11), 5839–5842.

Farooqui, Z., Afsar, M., Rizwan, S., Khan, A. A., ve Khan, F. (2016). Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver. Toxicology reports, 3, 328–335.

Gali-Muhtasib, H., El-Najjar, N., ve Schhneider-stock, R. (2005). The medicinal potential of black seed (Nigella sativa) and its components. Advances in Phytomedicine. 2, 133-153.

Gholamnezhad, Z., Havakhah, S., ve Boskabady, M. H. (2016). Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. Journal of ethnopharmacology, 190, 372–386.

Gomathinayagam, R., Ha, J. H., Jayaraman, M., Song, Y. S., Isidoro, C., ve Dhanasekaran, D. N. (2020). Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets. Journal of cancer prevention, 25(3), 136–151.

Gurung, R. L., Lim, S. N., Khaw, A. K., Soon, J. F., Shenoy, K., Mohamed Ali, S., ve ark. (2010). Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PloS ONE, 5(8), e12124.

Hadi, V., Kheirouri, S., Alizadeh, M., Khabbazi, A., ve Hosseini, H. (2016). Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. Avicenna journal of phytomedicine, 6(1), 34–43.

Hafiza, W. A., ve Latifah, S. Y. (2014). Potential implications of GRP58 expression and susceptibility of cervical cancer to cisplatin and thymoquinone-based therapy. OncoTargets and therapy, 7, 1375–1387.

Hassan, M. I., Mabrouk, G. M., Shehata, H. H., ve Aboelhussein, M. M. (2012). Antineoplastic effects of bee honey and Nigella sativa on hepatocellular carcinoma cells. Integrative cancer therapies, 11(4), 354–363.

Imran, M., Rauf, A., Khan, I. A., Shahbaz, M., Qaisrani, T. B., Fatmawati, S., ve ark. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 106, 390–402.

Jafri, S. H., Glass, J., Shi, R., Zhang, S., Prince, M., ve Kleiner-Hancock, H. (2010). Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. Journal of experimental & clinical cancer research: CR, 29(1), 87

Jrah-Harzallah, H., Ben-Hadj-Khalifa, S., Almawi, W. Y., Maaloul, A., Houas, Z., ve Mahjoub, T. (2013). Effect of thymoquinone on 1,2-dimethyl-hydrazine-induced oxidative stress during initiation and promotion of colon carcinogenesis. European journal of cancer (Oxford, England: 1990), 49(5), 1127–1135.

Khalife, K. H., ve Lupidi, G. (2007). Nonenzymatic reduction of thymoquinone in physiological conditions. Free radical research, 41(2), 153–161.

Khalife, K. H., ve Lupidi, G. (2008). Reduction of hypervalent states of myoglobin and hemoglobin to their ferrous forms by thymoquinone: the role of GSH, NADH and NADPH. Biochimica et biophysica acta, 1780(4), 627–637.

Khalife, R., Hodroj, M. H., Fakhoury, R., ve Rizk, S. (2016). Thymoquinone from Nigella sativa Seeds Promotes the Antitumor Activity of Noncytotoxic Doses of Topotecan in Human Colorectal Cancer Cells in Vitro. Planta medica, 82(4), 312–321.

Khan, M. A., Chen, H. C., Tania, M., ve Zhang, D. Z. (2011). Anticancer activities of Nigella sativa (black cumin). African journal of traditional, complementary, and alternative medicines: AJTCAM, 8(5 Suppl), 226–232.

Khan, M. A., Tania, M., ve Fu, J. (2019). Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug discovery today, 24(12), 2315–2322.

Khattab, M. M., ve Nagi, M. N. (2007). Thymoquinone supplementation attenuates hypertension and renal damage in nitric oxide deficient hypertensive rats. Phytotherapy research: PTR, 21(5), 410–414.

Kooti, W., Hasanzadeh-Noohi, Z., Sharafi-Ahvazi, N., Asadi-Samani, M., ve Ashtary-Larky, D. (2016). Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chinese journal of natural medicines, 14(10), 732–745.

Korak, T., Ergül, E., ve Sazci, A. (2020). Nigella sativa and Cancer: A Review Focusing on Breast Cancer, Inhibition of Metastasis and Enhancement of Natural Killer Cell Cytotoxicity. Current pharmaceutical biotechnology, 21(12), 1176–1185.

Kus, G., Ozkurt, M., Kabadere, S., Erkasap, N., Goger, G., ve Demirci, F. (2018). Antiproliferative and antiapoptotic effect of thymoquinone on cancer cells in vitro. Bratislava Medical Journal, 119(5), 312–316.

Lee, S. R., Mun, J. Y., Jeong, M. S., Lee, H. H., Roh, Y. G., Kim, W. T., ve ark. (2019). Thymoquinone-Induced Tristetraprolin Inhibits Tumor Growth and Metastasis through Destabilization of MUC4 mRNA. International journal of molecular sciences, 20(11), 2614.

Liou, Y. F., Chen, P. N., Chu, S. C., Kao, S. H., Chang, Y. Z., Hsieh, Y. S., ve Chang, H. R. (2019). Thymoquinone suppresses the proliferation of renal cell carcinoma cells via reactive oxygen species-induced apoptosis and reduces cell stemness. Environmental toxicology, 34(11), 1208–1220.

Mahmoud, Y. K., ve Abdelrazek, H. (2019). Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 115, 108783.

Majdalawieh, A. F., Fayyad, M. W., ve Nasrallah, G. K. (2017). Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Critical reviews in food science and nutrition, 57(18), 3911–3928.

Majdalawieh, A. F., ve Fayyad, M. W. (2015). Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. International immunopharmacology, 28(1), 295–304.

Marsik, P., Kokoska, L., Landa, P., Nepovim, A., Soudek, P., ve Vanek, T. (2005). In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta medica, 71(8), 739–742.

Meral, I., Pala, M., Akbas, F., Ustunova, S., Yildiz, C., ve Demirel, M. H. (2018). Effects of thymoquinone on liver miRNAs and oxidative stress in Ehrlich acid mouse solid tumor model. Biotechnic & histochemistry: official publication of the Biological Stain Commission, 93(4), 301–308.

Mollazadeh, H., Afshari, A. R., Hosseinzadeh, H. (2017). Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis. Journal of Pharmacopuncture, 20(3), 158–172.

Ndreshkjana, B., Çapci, A., Klein, V., Chanvorachote, P., Muenzner, J. K., Huebner, K., ve ark. (2019). Combination of 5-fluorouracil and thymoquinone targets stem cell gene signature in colorectal cancer cells. Cell death & disease, 10(6), 379.

Nili-Ahmadabadi, A., Tavakoli, F., Hasanzadeh, G., Rahimi, H., ve Sabzevari, O. (2011). Protective effect of pretreatment with thymoquinone against Aflatoxin B(1) induced liver toxicity in mice. Daru: journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 19(4), 282–287.

Pang, J., Shen, N., Yan, F., Zhao, N., Dou, L., Wu, L. C., ve ark. (2017). Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells. Oncotarget, 8(21), 34453–34467.

Peng, L., Liu, A., Shen, Y., Xu, H. Z., Yang, S. Z., Ying, X. Z., ve ark. (2013). Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncology reports, 29(2), 571–578.

Qadi, S. A., Hassan, M. A., Sheikh, R. A., Baothman, O. A., Zamzami, M. A., Choudhry, H., ve ark. (2019). Thymoquinone-Induced Reactivation of Tumor Suppressor Genes in Cancer Cells Involves Epigenetic Mechanisms. Epigenetics insights, 12, 2516865719839011.

Randhawa, M. A., ve Alghamdi, M. S. (2011). Anticancer activity of Nigella sativa (black seed) - a review. The American journal of Chinese medicine, 39(6), 1075–1091.

Rohini, B., Akther, T., Waseem, M., Khan, J., Kashif, M., ve Hemalatha, S. (2019). AgNPs from Nigella sativa Control Breast Cancer: An In Vitro Study. Journal of environmental pathology, toxicology and oncology: official organ of the International Society for Environmental Toxicology and Cancer, 38(2), 185–194.

Roy, P. S., ve Saikia, B. J. (2016). Cancer and cure: A critical analysis. Indian journal of cancer, 53(3), 441–442.

Sakalar, C., Yuruk, M., Kaya, T., Aytekin, M., Kuk, S., ve Canatan, H. (2013). Pronounced transcriptional regulation of apoptotic and TNF–NF-kappa-B signaling genes during the course of thymoquinone mediated apoptosis in HeLa cells. Molecular and Cellular Biochemistry, 383(1-2), 243–251.

Salmani, J. M., Asghar, S., Lv, H., ve Zhou, J. (2014). Aqueous solubility and degradation kinetics of the phytochemical anticancer thymoquinone; probing the effects of solvents, pH and light. Molecules (Basel, Switzerland), 19(5), 5925–5939.

Samarghandian, S., Azimi-Nezhad, M., ve Farkhondeh, T. (2018). Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma cells. Journal of Cellular Physiology, 234, 10421–10431.

Sayed-Ahmed, M. M., Aleisa, A. M., Al-Rejaie, S. S., Al-Yahya, A. A., Al-Shabanah, O. A., Hafez, M. M., ve ark. (2010). Thymoquinone attenuates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling. Oxidative medicine and cellular longevity, 3(4), 254–261.

Shafiq, H., Ahmad, A., Masud, T., Kaleem, M. (2014). Cardio-protective and anti-cancer therapeutic potential of miraculous herb N. sativa. Iran J Basic Med Sci, 17:967-979.

Shahin, Y. R., Elguindy, N. M., Abdel Bary, A., ve Balbaa, M. (2018). The protective mechanism of Nigella sativa against diethylnitrosamine-induced hepatocellular carcinoma through its antioxidant effect and EGFR/ERK1/2 signaling. Environmental Toxicology, 33(8), 885–898.

Shanmugam, M. K., Ahn, K. S., Hsu, A., Woo, C. C., Yuan. Y., Tan, K. H. B ve ark. (2018). Thymoquinone Inhibits Bone Metastasis of Breast Cancer Cells Through Abrogation of the CXCR4 Signaling Axis. Front. Pharmacol. 9:1294.

Singh, G., Marimuthu, P., Heluani, C. S., ve Catalan C. (2005). Chemical constituents and antimicrobial and antioxidant potentials of essential oil and acetone extract of Nigella Sativa Seeds. Journal of the Science of Food and Agriculture, 85(13), 2297–2306.

Sultan, M. T., Butt, M. S., Qayyum, M. M., ve Suleria, H. A. (2014). Immunity: plants as effective mediators. Critical reviews in food science and nutrition, 54(10), 1298–1308.

Tariq, S., Naqvi, S., Naz, S., Mubarik, M. S., Yaseen, M., Riaz, M., ve ark. (2020). Dose-Dependent Internalization and Externalization Integrity Study of Newly Synthesized 99mTc-Thymoquinone Radiopharmaceutical as Cancer Theranostic Agent. Dose-response: a publication of International Hormesis Society, 18(2), 1559325820914189.

Tavakoli-Rouzbehani, O. M., Maleki, V., Shadnoush, M., Taheri, E., ve Alizadeh, M. (2020). A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: a review. DARU Journal of Pharmaceutical Sciences.

Tekbas, A., Huebner, J., Settmacher, U., ve Dahmen, U. (2018). Plants and Surgery: The Protective Effects of Thymoquinone on Hepatic Injury-A Systematic Review of In Vivo Studies. International journal of molecular sciences, 19(4), 1085.

Tuorkey M. J. (2017). Therapeutic Potential of Nigella sativa Oil Against Cyclophosphamide-Induced DNA Damage and Hepatotoxicity. Nutrition and cancer, 69(3), 498–504.

Woo, C. C., Kumar, A. P., Sethi, G., ve Tan, K. H. B. (2012). Thymoquinone: Potential cure for inflammatory disorders and cancer. Biochemical Pharmacology, 83(4), 443–451.

Yang, J., Kuang, X. R., Lv, P. T., ve Yan, X. X. (2015). Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 36(1), 259–269.

Yi, T., Cho, S. G., Yi, Z., Pang, X., Rodriguez, M., Wang, Y., ve ark. (2008). Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Molecular cancer therapeutics, 7(7), 1789–1796.

Yimer, E. M., Tuem, K. B., Karim, A., Ur-Rehman, N., ve Anwar, F. (2019). Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evidence-based complementary and alternative medicine: eCAM, 2019, 15286

Zhang, Y., Fan, Y., Huang, S., Wang, G., Han, R., Lei, F., ve ark. (2018). Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway. Cancer science, 109(12), 3865–3873.

Zheng, J., Zhou, Y., Li, Y., Xu, D. P., Li, S., ve Li, H. B. (2016). Spices for Prevention and Treatment of Cancers. Nutrients, 8(8), 495.


  • There are currently no refbacks.

Creative Commons License
The Articles on this site are licensed under Creative Commons Attribution 4.0 International License.